Working With Survey Metadata

library(retroharmonize)
library(dplyr)
examples_dir <- system.file("examples", package = "retroharmonize")
survey_files <- dir(examples_dir)[grepl("\\.rds", dir(examples_dir))]
survey_files
#> [1] "ZA5913.rds" "ZA6863.rds" "ZA7576.rds"

Working With a Single Survey

survey_1 <- read_rds(file.path(examples_dir, survey_files[1]))
#> Warning: Unknown or uninitialised column: `rowid`.

This function should be renamed and slightly rewritten, it does too many things.

metadata_create(survey_1) %>% head()
#>            filename     id var_name_orig          class_orig
#> ZA5913.1 ZA5913.rds ZA5913           doi           character
#> ZA5913.2 ZA5913.rds ZA5913       version           character
#> ZA5913.3 ZA5913.rds ZA5913        uniqid             numeric
#> ZA5913.4 ZA5913.rds ZA5913      isocntry           character
#> ZA5913.5 ZA5913.rds ZA5913            p1      haven_labelled
#> ZA5913.6 ZA5913.rds ZA5913            p3 haven_labelled_spss
#>                                           var_label_orig
#> ZA5913.1                       digital_object_identifier
#> ZA5913.2                  gesis_archive_version_and_date
#> ZA5913.3 unique_respondent_id_caseid_by_tns_country_code
#> ZA5913.4                           country_code_iso_3166
#> ZA5913.5                               date_of_interview
#> ZA5913.6                   duration_of_interview_minutes
#>                                                 labels
#> ZA5913.1                                            NA
#> ZA5913.2                                            NA
#> ZA5913.3                                            NA
#> ZA5913.4                                            NA
#> ZA5913.5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
#> ZA5913.6                                   2, 225, 999
#>                                           valid_labels na_labels na_range
#> ZA5913.1                                            NA        NA       NA
#> ZA5913.2                                            NA        NA       NA
#> ZA5913.3                                            NA        NA       NA
#> ZA5913.4                                            NA        NA       NA
#> ZA5913.5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14                 NA
#> ZA5913.6                                        2, 225       999       NA
#>          n_labels n_valid_labels n_na_labels
#> ZA5913.1        0              0           0
#> ZA5913.2        0              0           0
#> ZA5913.3        0              0           0
#> ZA5913.4        0              0           0
#> ZA5913.5       14             14           0
#> ZA5913.6        3              2           1

Working With Multiple Surveys

survey_paths <- file.path(examples_dir, survey_files)

With smaller data frames representing your surveys, the most efficient way to work with the information is to read them into a list of surveys.

Read the surveys into a list object in the memory:

example_surveys <- read_surveys(survey_paths, .f = "read_rds")
#> Warning: Unknown or uninitialised column: `rowid`.
#> Unknown or uninitialised column: `rowid`.
#> Unknown or uninitialised column: `rowid`.

Map the metadata contents of the files:

set.seed(2022)
metadata_create(survey_list = example_surveys) %>%
  sample_n(12)
#>      filename     id var_name_orig          class_orig
#> 1  ZA6863.rds ZA6863        qa8a_3 haven_labelled_spss
#> 2  ZA6863.rds ZA6863         qd7.8      haven_labelled
#> 3  ZA5913.rds ZA5913            p3 haven_labelled_spss
#> 4  ZA7576.rds ZA7576         qd6.3 haven_labelled_spss
#> 5  ZA5913.rds ZA5913        qa10_2 haven_labelled_spss
#> 6  ZA5913.rds ZA5913            p4      haven_labelled
#> 7  ZA7576.rds ZA7576            p2      haven_labelled
#> 8  ZA7576.rds ZA7576        qa6a_8 haven_labelled_spss
#> 9  ZA5913.rds ZA5913           doi           character
#> 10 ZA6863.rds ZA6863           d60      haven_labelled
#> 11 ZA5913.rds ZA5913        qd3_12      haven_labelled
#> 12 ZA7576.rds ZA7576            d8      haven_labelled
#>                                var_label_orig               labels
#> 1                  trust_in_institutions_army           1, 2, 3, 9
#> 2            important_values_pers_solidarity                 0, 1
#> 3               duration_of_interview_minutes          2, 225, 999
#> 4          important_values_pers_human_rights              0, 1, 9
#> 5                   european_commission_trust              1, 2, 3
#> 6       n_of_persons_present_during_interview           1, 2, 3, 4
#> 7                           time_of_interview  1, 2, 3, 4, 5, 6, 8
#> 8   trust_in_institutions_national_government           1, 2, 3, 9
#> 9                   digital_object_identifier                   NA
#> 10        difficulties_paying_bills_last_year           1, 2, 3, 7
#> 11 important_values_pers_respect_for_cultures                 0, 1
#> 12                              age_education 0, 2, 89, 97, 98, 99
#>            valid_labels na_labels na_range n_labels n_valid_labels n_na_labels
#> 1               1, 2, 3         9       NA        4              3           1
#> 2                  0, 1                 NA        2              2           0
#> 3                2, 225       999       NA        3              2           1
#> 4                  0, 1         9       NA        3              2           1
#> 5                  1, 2         3       NA        3              2           1
#> 6            1, 2, 3, 4                 NA        4              4           0
#> 7   1, 2, 3, 4, 5, 6, 8                 NA        7              7           0
#> 8               1, 2, 3         9       NA        4              3           1
#> 9                    NA        NA       NA        0              0           0
#> 10           1, 2, 3, 7                 NA        4              4           0
#> 11                 0, 1                 NA        2              2           0
#> 12 0, 2, 89, 97, 98, 99                 NA        6              6           0

If you may ran out of memory, you can work with files. The advantage of keeping the surveys in memory is that later it will be much faster to continue working with them, but from the metadata point of view, the returned object is the same either way.

example_metadata <- metadata_create ( survey_paths = survey_paths, .f = "read_rds")
#> Warning: Unknown or uninitialised column: `rowid`.
#> Read: /tmp/Rtmp8U8wWC/Rinst11e862c69a74/retroharmonize/examples/ZA5913.rds
#> Warning: Unknown or uninitialised column: `rowid`.
#> Read: /tmp/Rtmp8U8wWC/Rinst11e862c69a74/retroharmonize/examples/ZA6863.rds
#> Warning: Unknown or uninitialised column: `rowid`.
#> Read: /tmp/Rtmp8U8wWC/Rinst11e862c69a74/retroharmonize/examples/ZA7576.rds
set.seed(2022)
example_metadata %>%
  sample_n(12)
#>      filename     id var_name_orig          class_orig
#> 1  ZA6863.rds ZA6863        qa8a_3 haven_labelled_spss
#> 2  ZA6863.rds ZA6863         qd7.8      haven_labelled
#> 3  ZA5913.rds ZA5913            p3 haven_labelled_spss
#> 4  ZA7576.rds ZA7576         qd6.3 haven_labelled_spss
#> 5  ZA5913.rds ZA5913        qa10_2 haven_labelled_spss
#> 6  ZA5913.rds ZA5913            p4      haven_labelled
#> 7  ZA7576.rds ZA7576            p2      haven_labelled
#> 8  ZA7576.rds ZA7576        qa6a_8 haven_labelled_spss
#> 9  ZA5913.rds ZA5913           doi           character
#> 10 ZA6863.rds ZA6863           d60      haven_labelled
#> 11 ZA5913.rds ZA5913        qd3_12      haven_labelled
#> 12 ZA7576.rds ZA7576            d8      haven_labelled
#>                                var_label_orig               labels
#> 1                  trust_in_institutions_army           1, 2, 3, 9
#> 2            important_values_pers_solidarity                 0, 1
#> 3               duration_of_interview_minutes          2, 225, 999
#> 4          important_values_pers_human_rights              0, 1, 9
#> 5                   european_commission_trust              1, 2, 3
#> 6       n_of_persons_present_during_interview           1, 2, 3, 4
#> 7                           time_of_interview  1, 2, 3, 4, 5, 6, 8
#> 8   trust_in_institutions_national_government           1, 2, 3, 9
#> 9                   digital_object_identifier                   NA
#> 10        difficulties_paying_bills_last_year           1, 2, 3, 7
#> 11 important_values_pers_respect_for_cultures                 0, 1
#> 12                              age_education 0, 2, 89, 97, 98, 99
#>            valid_labels na_labels na_range n_labels n_valid_labels n_na_labels
#> 1               1, 2, 3         9       NA        4              3           1
#> 2                  0, 1                 NA        2              2           0
#> 3                2, 225       999       NA        3              2           1
#> 4                  0, 1         9       NA        3              2           1
#> 5                  1, 2         3       NA        3              2           1
#> 6            1, 2, 3, 4                 NA        4              4           0
#> 7   1, 2, 3, 4, 5, 6, 8                 NA        7              7           0
#> 8               1, 2, 3         9       NA        4              3           1
#> 9                    NA        NA       NA        0              0           0
#> 10           1, 2, 3, 7                 NA        4              4           0
#> 11                 0, 1                 NA        2              2           0
#> 12 0, 2, 89, 97, 98, 99                 NA        6              6           0

A quick glance at some metadata:

library(dplyr)
subset_example_metadata <- example_metadata %>%
  filter ( grepl("trust", .data$var_label_orig) ) %>%
  filter ( grepl("european_parliament", .data$var_label_orig)) %>%
  select ( all_of(c("filename", "var_label_orig", "var_name_orig", "valid_labels", "na_labels", "class_orig")))

subset_example_metadata
#>     filename            var_label_orig var_name_orig valid_labels na_labels
#> 1 ZA5913.rds european_parliament_trust        qa10_1         1, 2         3
#> 2 ZA6863.rds european_parliament_trust        qa14_1      1, 2, 3          
#> 3 ZA7576.rds european_parliament_trust        qa14_1      1, 2, 3         9
#>            class_orig
#> 1 haven_labelled_spss
#> 2      haven_labelled
#> 3 haven_labelled_spss

In ZA5913.rds the Trust in European Parliament variable is called qa10_1, in the other surveys it is called qa14_1.

In the first survey, the variable has two values (coded as 1 and 2, and labelled as Tend to trust and Tend not to trust. )

unlist(subset_example_metadata$valid_labels[1])
#>     Tend to trust Tend not to trust 
#>                 1                 2

In the first survey, the variable has two values (coded as 1 and 2, and labelled as Tend to trust and Tend not to trust.) In the second survey, we have three values, and non of them are marked as special, missing values. This is not surprising, because they were not SPSS files. They have related, but not exactly matching classes, too. Therefore, these variables need to be harmonized.

unlist(subset_example_metadata$valid_labels[2])
#>     Tend to trust Tend not to trust                DK 
#>                 1                 2                 3
unlist(subset_example_metadata$na_labels[2])
#> numeric(0)

The metadata created by the metadata_create() and its version for multiple surveys, metadata_create, gives a first overview for the harmonization of concepts, the necessary harmonization of variable names and variable labels. In this case:

  • Variable name harmonization is required: For a successful join, you must use a common name for qa10_1 and qa14_1, for example, trust_european_parliament, because the variable refers to the same concept.
  • Variable label harmonization is required: You must make sure that the variable has three categories, even if one category, Declined (to answer) is missing from ZA5913.rds.
  • Type harmonization is needed: For various statistical procedures you must convert the concatenated contents of qa10_1 and qa14_1 into a numerical variable or factor variable. It is practical to use 1=“Tend to Trust”, 0=“Tend not to trust” for calculating the percentage of people trusting the European Parliament, making sure that Decline will get a NA_real_ value for averaging, or creating a factor variable with three levels, for example trust, not_trust, declined.